勘探开发存储 随着AI技术的发展和普及,当今社会已经进入了智能化时代。与以往不同的是,在这一波浪潮中,企业不仅是向数字化转型,更是向知识化转型。那么,如何助力企业破解智能化知识挖掘和管理难题,实现知识化转型? 3月13日下午14:00起举行的华为开发者大会2020(Cloud)第三期华为DevRun Live开发者沙龙中,华为云自然语言处理技术专家郑毅将分享《企业级知识计算平台的技术解读和案例实践》,带你了解华为云知识计算平台及相关技术、知识图谱构建流程及方法,以及知识计算行业案例。下文主要讲述“知识图谱构建流程及方法”,让我们先睹为快。 一、什么是知识图谱? 知识图谱是由实体、关系和属性组成的一种数据结构。以下图为例,“刘德华”是一个人物类型的实体,“刘德华”有自己的身高、国籍等信息,这些信息便称之为实体的属性。同样,“无间道”是一个电影类型的实体。我们知道“刘德华”是“无间道”这部电影的主演,所以“刘德华”与“无间道”之间有“主演”关系。通过实体、关系、属性,就能够把我们人可以理解的知识有效地组织起来。知识图谱的构建与应用涉及数据库、自然语言处理(NLP)和语义网络等技术。 按照知识图谱的用途,知识图谱可分为通用知识图谱和行业知识图谱。通用知识图谱侧重构建常识性的知识,并用于搜索引擎和推荐系统等。行业知识图谱(也可称企业知识图谱)主要面向企业业务,通过构建不同行业、企业的知识图谱,对企业内部提供知识化服务。华为云知识图谱服务可用于以上两类知识图谱的构建、管理和服务,更侧重面向企业知识图谱。 二、如何构建知识图谱? 知识图谱构建主要分为自顶向下(top-down)与自底向上(bottom-up)两种构建方式。自顶向下构建方式需要先定义好本体(Ontology或称为Schema),再基于输入数据完成信息抽取到图谱构建的过程。该方法更适用于专业知识方面图谱的构建,比如企业知识图谱,面向领域专业用户使用。自底向上构建方式则是从开放的OpenLinkedData中抽取置信度高的知识,或从非结构化文本中抽取知识,完成知识图谱的构建。该方式更适用于常识性的知识,比如人名、机构名等通用知识图谱的构建。本文侧重介绍自顶向下构建方式的相关流程和技术,并用于构建企业知识图谱。
|